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FOREWORD

This report summarizes the work performed under Contract NAS8-5416,
Study of Fundamentals of Pressurant Distributor Design, for the George
C. Marshall Space Flight Center, NASA, Huntsville, Alcbama.
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1.0 SUMMARY )

;7677

The resulis of an enalytical and experimental study of pressurant distrioutor design

fundementals are presented.

The results of expuision tests employing gaseous nitrogen over liguid nitrogen clear=

ly show tnat a means of limiting the velocity with which condensable pressurants im=

£
i

pinge on ine liquid surface is required it massive condensation is to be avoided. It

was found, using a "poor" disiributor, that when the gas inlet velocity reached a

critical value for the current location of the liguid surface, @ sudden drop in ullage 1

. e .

pressure occurred indicating a great increase in condensation rate brought about by

disturbance of the liquid surface. No such coilapse of ullage pressure was found in

ihe six expuision tesis with the "good" distributor., The only test completed with the

"poor' distributor required approximately twice as much pressurant as any of the other

b

tests even though collapse of the ullage pressure was successfully avoided.

An cnalysis of turbuient free convection heat transfer based on the equations devel=
oped by Ecizert and Jackson (Reference 1) is oresented. Curves of Grashof number,
characteristic velocity, and heat transfer coefficient as functions of gas-to=-wall tem=
perature difference with length of boundary layer run and with wall temperature as

parameters are presented for gaseous hydrogen, oxygen, helium, and nitrogen all at

30 psia. A computer program used to generate some of the free convection data is

inciuded along with a sample case.

An analysis of forced convection is made on the basis of the radial wall jet. Theo=
retical and experimental investigations of the radial wall jet have shown that the
y moximum velocity in the jet decreases rapidly with distance while the entrainment

of secondary fivid increases quite rapidly. The rapid decay of maximum velocity is

indicative of a rapid deccy in heat transfer coefficient which is a desirable charac=

teristic in a pressurant distrioutor. The high rate of sezondary fluid entrainment is
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also a desirable characteristic because it tends to reduce the buik temperature of tne

jet thereby reducing the gas-to=wall temperature difference which is the driving po-

tential of the convective hect transfer and consequently the magnitude of that heat

it . |

transier.,

.

Rigimesh screen was found to have a much higher strength~to=weight ratio than any

)

other material tested. Since it presents no straight through flow paths, effective

'

turning of the flow Is assured. The porosity of the screen can be varied over a wide

1

range with lirtle chenge in strength or weight.

Multiple radial distributors are shown to be lighter than a single distributor when to-

tal active surface area and internal pressure cre the same. The weight of additional

olumbing required for multiple inlets is not considered.

. Lot ,‘L'r_gm.__~ A o aan
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2.0 iINTRODUCTION

Since the weight of the_pressurization system can be a significant portion of the

i — Do

weight of the vehicle, it is necessary to optimize the system so that a minimum pay-

load penclty will be imposed. The optimization raust consider both the weight of the

pressurant required and_the weight of system nharaware.

s

o minimize the weight of pressurant required, it is necessary o provide for a high

T S

avercge final gas temperature and to minimize condensation. The role of the pres-

surant cistributor is to introduce the pressurant inte the tank in a manner which will

promote these objectives. = ==

cstadily submndest

A pressurant distributor cepable of eliminating forced convection effects at the tank

wall and liquid surface probebly wouid impose a considerable net payload penalty on

the venicle. It is, tnerefore, necessary to optimize the weight of the total pressuri-
zation system,

The test program, in which licuid nitrogen was pressurized and discharged from a

500 gallon test tank, demonsirated the necessity for having at least a minimum dis-

tributor when ¢ condensadle pressurant is employed. In.these tests, it was found that
lem total Il Iy PP d when the " " distrib d

almost total collepse of the pressurant occurred when the "poor" distributor was use

ana littie collapse was found when the "good" distributor was used.

anih \oe




3.0 ANALYSES

3.1 FREE CONVECTION

The present study is lergely concerned with heat transfer from the pressurizing gas to
the tank wall and to the liquid in a liquid propeliant tank. Since this transfer, as-
f suming a good distributor, will be primarily due to free convection, it is necessary
L to determine the free convection heat transfer characteristics for a range of represent=
‘ ative conditions. To this end, curves of Grashof number, characteristic velocity,

and heat transfer coefficient were generated for various boundary layer runs, wall
) temperatures, and gas-to-wall temperature differences for gaseous nydrogen, helium,
oxygen, and nitrogen all at 30 psia. These curves are Figures 1 through 12. The .
computations are based on vertical flat plate theory. The equations for turbulent
flow were used since almost all of the computed Grashof numbers exceed ]09 which

4 is the usually accepted value for transition from laminear to turbulent flow.

The characteristic velocity is the free stream velocity of a forced convection flow
which would give the same velocity profiie near the wali as does the free convection
flow. It seems probable that little would be gained by enlarging the pressurant dis-

tributor beyond the point af which its exit velocity is of the order of the free convec-
tion characteristic velocity. When the exit velocity is less than the free convection

induced velocity, free convection effects will determine the heat transfer coefficient

ct the wall. Thus, the characteristic velocity is indicative of the minimum practical

distributor discharge velocity.

The calculated free convection curves presented herein can be expected to pradict

only approximately the conditions in an emptying tank. The theory was developed

for a steady-state vertical flat plate at constant temperature and with a sharp lecd-

— aam e

ing edge; whereas, “he test tank is an enciosed volume with conditions varying over
g g&; I b4

1 e

time and position. However, they are useful for establishing trends and probable
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ranges of conditions to be encountered. Past experience has shown results to agree

surprisingly well with predicted values.

A Recomp Il computer program was used to facilitate the computation of the free
convection data for oxygen and nitrogen. The program, with a sample case, is de=~-
scribed in Appendix |, It is included as an aid to the computation of data for condi-

tions not included in this report.
3.2 FORCED CONVECTION —_—

Forced convection in the uliage region of a missile propellont tank is too complex
to permit a general solution. The principal impediments to the analytical solution
of the mixed forced and free convectioninthiscase arise from the time ond space

dependence of boundary temperatures, the time dependence of the physical bound-

anm Ah

aries of the convective region, and on the existence of a compound boundary condi=
tion in which a flow may be bounded on two sides by temperatures which differ from

each other and from that of the bulk flow. This_latter complication is apparent in

the case of a wall jet in which the hot flow of gas is bounded on one side by a cold

wall and on the other side by the cool bulk ullage ges.

A radial wall jet on a flat plate in quiescent surroundings is representative of a radi=
ally discharging pressurant distributor which is mounted coaxially with the propeHon.t
tank on the upper bulkhead of the tank. The flow properties of such a wall jet have
been studied both analytically and experimentally by several investigators (see for
example, Reference 2). The results of these studies are important even though they

do not directly provide heat transfer data,

Ludwig and Brady (Reference 2) studied the phenomena associated with the inpinge=

ment of o uniform jet on a flat piate. After turning, the flow in this case behaves

os would a wall jet. In the region where the flow is behaving as a wall jet, these
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cuthors found the non-dimensional maximum velocity in the jet to be proportional fo
the non-dimensional radius raised to the ~1.143 power. Similarly, they found the
non~-dimensional distance from the plate to the point at which the velocity is one-

half maximum velocity to be proportional to the 1.028 power of the non-dimensional

radius.

The velocity and distances are non-dimensionalized by dividing by the uniform ve-
I . R g . ﬁ‘ll . it - te » . . 1 l -
wocity of the initial {et and by the radius of that jet, respectively. These correla

tions are shown in Figure 26 of Reference 2.

in a true wall jet, the exit surface or slot is the origin of the flow and no radius ad-

justment is required in the equation for maximum velocity. That equation is:

u -1.143
m __( r \
u, R/
whereu = Jocal maximum velocity at o,
U_ = initial velocity at R,
@®
r = radius from nozzle centerline, and

R = radius of nozzle.

e . . . r-R
This equation can be put into a more convenient form by defining r* = -

in which case

u

“UE‘ = (1~ r*)-).]43

Figure 13 shows the very rapid decay in maximum velocity as a function of distance

from the nozzle surface.
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As seen in Figure 25 of Reference 2, R/ increases as the 1,028 power of r/R aft'er

wall jet flow is established. Since boundary layer growth by entrainment of second=

ary fluid begins at the origin, YV2 = Hatr-R. The corresponding equation for
Y]/2 becomes:

whereH = nozzle height,

other terms previously defined.

Ludwig and Brady also correlated mass flow as a function of radial position in the iét.

They found the fellowing eguation to hold true:

e Q = 222 70 Y Y]/2

where Qr radial mass flow rate at r,

P = |et density, and

o :0
oy s Y]/,2 as previously defined.

Substituting the equations for v, and Y]/‘,2 into this equation yields:

-0.015
f)

Qr= 2.2wpU_ H r(-£
Non-dimensionalizing this equation by the mass flow at the origin gives:

c’zr >O.985
a

=]

20
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again, using r" = T,
|
Qr £ 0.985 1
— (1 ~R*) .
Q
.
For this flow, the entrainment of secondary mass is shown in Figure 14. Note that a
mass approximately ecuai to the initial mass is entrained for each nozzle radius of
flow path outside the nozzle. 1
4
The very rapid decay in moximum velocity with distence from the nozzle implies a 1
relatively small range of strong forced convection effects even at rather high nozzle
- . . . e ' ‘
exit velocities. This conclusion is further justified by the fact that pressurant gas
requirements computed on the basis of free convection only,in general, agree quite !
well with corresponding test resuits. _ 4
P e {

The high rate of secondary fluid entrainment also tends toward the establishment of
free convection conditions from the initial forced convection conditions by reducing
the difference between the bulk temperature of the jet and that of the surrounding
gas. Thus, the initial temperature of the jet is reduced by mixing to a value more
nearly that of the bulk uliage gas, thereby permitting the use of wall temperature

and bulk gaus temperature on the calculation of free convection heat transfer.

For a given discharge area, the minimum velocity is attained when a uniform velocity
profile is achieved. Since forced convection neat transfer coefficients increase with
velocity, it is desirable 1o obtain reduced velocities by smoothing the velocity pro=
file across the diffuser exit. This smoothing of the velocity profile is accomplished

by increasing the pressure drop in the radial direction relative to that in the axial

direction. A porous surface, such as a screen, placed over the discharge of the dis-
tributor is the oest way of increasing radiai pressure gradient substantially independ=

ently of the axial pressure gradient. Several porous materials were investigated to
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determine their suitabilities in this application,

. . . . )
Pressure drops across several active surface materials of the flow rate of air at 70°F
into an atmospheric plenum are shown in Figure 15. The data for Rigimesh cnd Po~
rous Stainless Steel were obtained from References 3 and 4, respectively. The data
for the 40 mesh perforated screen and for the 60X 60X .011 woven screen were com=

puted from pressure drop correlations presented in References 5 and 6, respectively.

The two curves for Rigimesh illustrate the wide range of porosity which can be a=.
chieved for substantially the same weight of material or with substantially the sare

strength. For small diameter distributors where the weight of the distributor is deter=

e &

mined by considerations other thiun pressure induced stress, a more uniform ve{ociry
profile can be obtained by using a higher pressure drop at no increase in distributor
weight. For large diameter distributors where pressure induced stresses are signifi=
cant, it is evident that the weight of the distributor can be reduced perhops substan=-
tially by the selection of a higher porosity material. It is realized, of course, that
the flow orienting ability of a material is related to its porosity, This is discussed

elsewhere in this report.

For a given required active surface area and allowable length L, the weight of the

active surface is:

where% =  weight of active surface material per unit orea, and

fs = thickness.

The end closure of the distributor will have a weight:

PG TR

= ¥+D2 4
We = KmD péte

.
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where the constant K depends upon the particuiar configuration employed.

Using N identical distributors of the required total active surface area, the cctive

surface weight is:

W =W=N7DL pt =7DLpt .
sn H nn ssn s S

But, NTrDan = 7DLand t ~ D,

Of course, the proportionality between t and D holds only when t is determined by

internal pressure.

W t D
sn _ sn _ n
w t
s s

The weight of the end closure is:

[
3

anib 2o

ol Lk po .

w N D 2f
en _ n en
We D1
e
again, t ~ D so: E—
w N D 3 _
en _ n
We D3

Consider a fixed /D ratio:
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mDL= N7 D L
n n

Then,

e %a(1)
W D N
3
W ND° 32 1. \1/2
€n = n 3 N ..]_ = _].
W - D N N
e 3
Consider total weight:
W =W +W
tn sn en
W, = W + W
t S e

So
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“ ternal plumbing required to supply multiple distributors will somewhat offset the ap=

“heat transfer coefficient is directly proportional to the local maximum velocity. To-

" over the dgrea of influence. For simplification this drea is taken from the outlet to

Consider a fixed length L: "
{
mDOL= Nnx Dn Ln 1
D
—PD=ND — = _]..
.n'D. N |
L
Therefore, _ _
B g = 1
Yo |1 =
W N
s
1
en N N i
:
W W o+ W W o+ W !
tn__ sn en = sn en
W 2 2 |

tn - L d . .
In both examples -——— decreases as N is increased, However, an increase in ex=

Wy

parent saving.
The foregoing analysis has shown that multiple distributors are advantageous from the
viewpoint of distributor weight. The effect of multiple distributors on forced convec=

tion is now considered. For purposes of this analysis, it is assumed that the local

tal forced convective heat transfer, then, is proportional to the integral of h dA

an arbitrary minimum velocity when a common outlet velocity is assumed.,
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The maximum local velocity is given by:

The differential area is given by:
dA=27r o

To obtain a given decrease in maximum local velocity, it is necessary only to spec=

ify the radius ratio -‘% = Q.

The integral of v dA is evalucted between the limits of R and r where r = aR.

1.143
R '
Jer v da=2rmy, [° (-é) rdr
R R
27U [ 0.857 ] 2
S =085 L% -1JR

R 1/2

For constant L/D, -—;— it~ and N differential areos are required. These substi=

tutions reduce the above integral to itself thereby showing that no heat transfer ad=

vantage is to be gained by multiple distributors of constant L/D ratio.

R
For constant length L, —er = —llT and N differential areas are required. These substi=

tutions reduce the integral to the following:

i
1
1
4
1
!
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will have —Iél- times the total heat transfer of the single distributor.

3.3 TEST TANK

Figure 16 shows the effect of tilm coefficient on pressurant requirements in the 500~
gallon test tank. Pressurizing gas changes by a factor of four for a change in film

coefficient from 30 Bfu/hr-ftz-R to zero., This is a much Icrger percentage change

than in a flight tank (Figure 17).

POV W

The difference is due primarily to two factors, radius and structural safety factor, 1
For a given pressure, tank wall thickness is proportional to radius but tank volume

is proportional to radius squared, so the ratio of gas weight to wall weight increo;es ‘
in direct proportion to radius. Thus, wall heat capacity has an inherently smaller ‘
gos cooling potential in a large tank than in a small tank. Furthermore, the 500~ j

gallon tank was designed for operation at 100 psia with the increcsed structural mar=
gins normally associated with test tanks as compared to flight tanks. Thus, the test

tank again has a relatively large gas cooling capacity.

In actuality, the effect of film coefficient on pressurant requirements is likely to be
somewhat more pronounced than is indicated by Figure 16. The difference will be
due to the assumption of no interface heat or mass transfer and to the higher actual
mass of the dome area of the tank. _The addiiional mass of moterial associated with
| the flange and lid of the manhcle substantially increases the wall heat capacity in
the dome region thereby increasing the gns cooling rate in that region. This effect

! was not included in the development of Figure 16,

j The effect of inlet gas temperature on pressurant requirement, shown in Figure 18, is

presented only to show the relatively small variation that can be expected and, there=

fore, the accuracy with which this quantity must beé measured during the test opera=»

tion,
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Conditions

10% initial Ullage

100 gpin Discharge

72 Bru/hr-ft2 Heat Leak

No Heat Transfer Across Liquid =
Vapor Interfaze : .
30 psia Tank Pressure

540°R Inlet Gas Temperature
. GH2 Cn LH2 {

W —

N O»

|
0 10 20 30 40 !
Heat Transfer Coefficient, Btu/hr -ftz-R

FIGURE 16 EFFECT OF INTERNAL GAS-TO-WALL HEAT TRANSFER COEFFICIENT
ON PRESSURANT GAS REQUIREMENT - 500 GALLON TEST TANK
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FIGURE 18 EFFECT OF INLET GAS TEMPERATURE ON
PRESSURANT REQUIREMEMT ~ TEST TANK
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3.4 FLIGHT TANK

To obtain an indication of the possible weight savings to be realized by proper distri=
bution of the pressurant gas o;‘ the inlet, calculations were made for a flight size
tank. Using the Lockheed~Georgia Company Tank Pressurization and Aerodynamic
Heating Program for the IBM 7090 computer (Reference 7), the required inlet gas
flow history was determined for a representative large hydrogen tank. On the basis
of free convection data for similar conditions, it seemed reasonable to size the dis-
tributor for a velocity of 10 ft/sec based on gross active surface area. For the max=

imum inlet flow rate of 6.21 Ib/sec, this gave an area of 32.25 ft2.

The potential gain due to reduced wall heat transfer coefficients can be seen from ‘
Figure 17, which is the pressurizing gas requirements computed in the IBM runs for-
the conditions indicated on the figure. If both the sidewall coefficient and the dome
coefficient are reduced from 30 Btu/hr - fr2 -R to zero, the saving in pressurizing
gos weight is 230 lbs. However, if the distributor is cssﬁmed to offect only the dome
coefficient, the saving would be 30 Ibs for complete elimination of dome heat trans-

fer or 10 lbs if h is reduced, from 30 to 10 Btu/hr - ffz-R.

The effect of heat and mass transfer across the liquid=-vapor interface was not in=
cluded in the computer runs because sufficient data relative to these processes were
not available at the time. However, it seems reasonable to assume that these effects
would tend to increase the potential saving due to proper propellant distribution in
which heat ond mass transfer coefficients are reduced at the interface as well as a-
long the tank boundaries. This assumption is verified by the results of the 500-gal=
lon tank tests with nitrogen in which severe condensdtion of the pressurant occurred

as the result of poor inlet gos distribution.

3.5 SCALING ANALYSIS

Of necessity, all of the data collected in the course of this program are from tanks

33




-y T - T~

of much smaller size than the ones to which the information or results are to be ap-
plied. It is for the purpose of determining the applicability of data collected in this
program to flight systems that the following analysis was performed. Specifically,
the intent of the analysis is the determination of those variables, or groups of vari-
ables, v‘hich have a significant influence on the total pressurant gas requirements

and of the degree to which they influence these requirements.

The pressurizing gas requirements of any system are determined by bulancing the rate
of change of energy in the gas space with the rate of change of energy in the wall.
‘\he iate of change of energy in the gas space is equal to the rate at which energy

enters the system minus the rate at which energy leaves the system. That is, -

RATE OF CHANGE OF _ RATE OF ENERGY ENTERING

ENERGY IN GAS SPACE IN INLET GAS

_ RATE OF ENERGY _ RATE OF HEAT TRANSFER
ENTERING WALL FROM GAS TO LIQUID

_ RATE OF ENERGY TRANSFER FROM  _ RATE OF WORK
GASTO LIQUIDBY CONDEINSATION DONE BY GAS

The rate of energy entering the wall is equal to the net rate of energy transfer to the

wall from the pressurizing gas and from external heating. That is,

RATE OF ENERGY - RATE OF HEAT TRANSFER

ENTERING WALL FROM GAS TO WALL

+ RATE OF AERODYNAMIC N NET RADIANT ENERGY
HEAT TRANSFER TO WALL ' FLUX TO WALL

For the present, it is assumed that the heat and mass transfer between the gas and
the liquid is negligible compared 10 other effects and, therefore, they are dropped
from the analysis. |f it should later be shown that they dre generally important and

if the magnitudes of the coefficients governing the interchange can be determined,
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these terms can readily be included. Hcating of the wall from the outside is omitted

in this development.

The approach for determining the dimensional groups is that described in References
8 and 9. The dimensionless groups are determined by dividing the governing differ-

ential equation by one term of the equation as follows:

dT _ . dWg _ _ Vvt dP
: .Wng e Cp (Ti-Tg) T hA (Tg Tw)+«—J--a?
Refer to the end of this section for definitions of terms.
Setting dT = Tg
dr = 7T
dWg = Wg
dP = AP
ond rearranging terms gives:
Wg SP Tg - We CPT(T"TQ) - hA(Tg=Tw) + Vj é‘.

Wg Cp Tg
T

Dividing through by and setting Wg = Wu + Wsg gives:

Tg-Tw hAT
1= Ji-Tg _ _Ts Cp , _Vt AP

Tg Wu + Wsg JWg Cp Tg

Assuming that the gas behaves as a perfect gas and that the pressure change can be
]
expressed as a power function of time, P= CK TK, the last term of the above equa=

tion con be reduced os follows:

i
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Vi AP _ RAP K R __ K (]_l)
WgTg CpJ CpPgJ Pg JCp Pg Y

Tg=Tw hA T L
The erm \I/gu - ngcp becomes more meaningful when Wu is replaced by pu Vi
and the entire term is multiplied by Py A .
piVt
Tg-Tw hAT Tg-Tw hA T
Tg Cp Tg piVtCp
Wu + Wsg pu Vi + Wsg

pi Vt pi Vvt

When these substitutions are made the reduced differential equation becomes:

. Tw hA T K
AT _("Tg)_zma_ kT a-1
Tg pu Vi Wsg Pg Y

pi Vit pi Vit

The energy rate cquation for the wall,

tm pm Cpm %\'X = h(Tg=-Tw),

is readily reduced to:

- tm pm Cpm Tw

| ht Tg-Tw

by the technique applied to the energy rate equation for the gas.

Combining the two reduced energy rate equations and transposing the unknown groups

to the left side yields:
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_ K
i Wg Wig | _ | _PAT_ pwi tmpmCpm C 7 (]__1_)T
To' WVt Wi | | BIVICs piVi’ Rt ' T Pg 5
= K
or Wsg  _ hAT puVi tmpmCpm CK T (1= _l_)_!
oivi 91| pivice’ pivt' Rt ' " Pg Y
B C TK 7]
i Wg hAT puVi tmpmCpm K (1- l)
oive 92| mivir pivir T hT ' T Pg y
B C TK o
Tw  _ hAT  puVi tmpmCpm K (]-_1_)
Tg 93| pivi’ pivt’ — Rt ' Pg Y

The term &/—5— is the ratio of the weight of the pressurizing gas actually supplied

piVt
to the weight of gas required to fill the tank assuming no initial ullage and no heat
Wg _ Ti
er. —_ = | t of
or mass transfer. The term 5TV - Tg is the ratio of the actual weight of gas in

===the tank assuming the same conditions stated above.

The solution of the second of the above equations was obtcined with the equation re=

written as: _—

To_ Wg =C hat \° tm,:)memb pu,_,/U c:K ‘Z:ld
Tg piVt 1 \pi DCp ht pi Pg Y

The coefficients were determined for the case of hydrogen using the Lockheed-Geor=

**;gml

gia Company Tank Pressurization Program. The data availoble when the coefficient
‘ ond exponents were obtained were for constant pressure runs and thus were insuffi-

clent to permit the determination of the exponent "d". The data used to determine

. the coefficient "C."and the other exponents are shown in Table 1 ond are plotted in
’ Figure 19. The slope of each curve is the exoonem for that term. The coefficient
' "C "isfound by dividing the temperature ratio —T»- by the product of all of the groups |

rmscd to the appropriate power. The resulting expression is:




TABLE 1 CORRELATION DATA

] Run Ti tm pm Cpm ht \ RY oy . Wsg

Number h7 piDCp pi Pl VT Comp.
] 500 0.433 0.437 0.248 1.4}
2 500 0.6722 0.437 0.248 1.25
3 500 0.722 0.437 0.248 1.46
4 500 3.62 0.437 0.248 1.63
5 500 0.408 0.044 0.248 1.10 -
6 500 0.408 0.10 0.248 1.23
7 500 0.408 - | 0.65 0.248 1.49
8 500 0.408 0.437 0.10 1.34
9 500 0.408 0.437 0.5 i.54
10 500 0.408 0.437 0.503 | 1.59
R 300 0.167 0.0264 0.149 1.0
12 300 0.167 0.06 0.149 1.12
13 300 0.167 0.39 0.149 1.27
14 300 0.167 0.26 0.06 1.17
15 300 0.167 0.26 0.3 1.30
16 700 0.513 0.0616 0.347 1.27
17 700 0.513 | 0.14 0.347 1.33
18 700 0.513 0.91 | 0.347 1.67
19 700 0.513 0.612 0.14 1.48

20 700 0.513 0.612 0.7 .75
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Wo o as hr _-0.]13 tm pm Cpm -0.0675 PY o -0.098
piVt ’ piDCp hTt ; pi -

Assuming for the moment that in cases where the liquid is not expelled at constant
pressure that the effect of the work term on the gas requirements is small or that at
worst it is a constant additive, the possible reduction in the gas requirements of a
flight system that could be obtained by using an effective pressurant distributor can
be determined from this equation if the effect of distributor design on heat transfer
coefficient is known, By substituting information from flight systems into the above

expression, the test conditions for studying each flight system can be determined.

A_computer program has been written to facilitate the use of the above expression'
in the computation and extrapolation of pressurant requirement data. The computer

program is discussed in Appendix il.

3.6 DESCRIPTION OF SYMBOLS

;nig

Symbol Description Units

A Wg Retio of actual quantity of gas
! inT to that required if no heat or mass = ===== -
transfer occurred
c _hT_ Dimensionless parameter Y s -
"7 piDCp P
Co, cp f;:gitsant pressura specific heat Btu/lb OF
Cpm, cpm Specific heat of tank wall Btu/lb -°F
D, d Diameter of tank Ft
- tmpmCpm o . , . A
E, e, - Dimensionless parameter Seammis
40
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Symbol

F, f, B2 %u
pu ",

Imax, imax
Pi, pi

Pu, pu

R, T

Rhom, pom
pi

pu

Ti, ti

tm

Tu, tu

| Time, time, T
iJ, U, O/OU

Vt

(Continued)

Description

Dimensionless parameter

Heat trensfer coefficient in
ullage region

Number of data sets input
Pressure of inlet gas

Initial ullage pressure

Gas constant

Specific weight of tank wall
Specific weight of incoming gas

Specific weight of initial ullage
gas

Temperature of incoming gas
Thickness of tank wall

Initial ullage gas temperature
Emptying time of tank

Ratio of initial ullage volume
to totul tank volume

Total tank volume

hr

ft

,;._L.-
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4,0 EXPERIMENTS

4.1 SMOKE TEST CHAMBER
The smoke test chamber shown in Figure 20 was used to obtain qualitative data on
the discﬁarge characteristics of real distributors. Visual and photographic abserva-

tion of seve:al configurations were made under flow conditions in the chamber,

The test chomber is @ 42-inch diameter carbon steel cylinder with an ellipsoidai dome
-on one end and a removable perforated aluminum plate at the other end. The over-
all length of the chamber is 4.5 feet. A 1.5-inch diameter pressurizing gos line en~
ters the dome end of the chamber from the side in the same manner as it enters fhe’
500-gallon cryogenic test tank, Thus, the smoke chamber is essentially identical in

size and shape to the upper half of the 500-gallon tank.

A dense, white, non-toxic smoke suitable for both visual and photographic observa-
tion was produced by passing air over olibanum gum which was heated in the gas
generator. A nominal 100 psi, 1-inch diameter line from the shop air system sup-
plied the test apparatus. |t should be mentioned that the smoke, under certain con~

ditions, is explosive.

Four windows are provided for observation: the three shown in Figure 20 and another
which was added in the center of the removable end plate. Each of the windows has
an 8-inch diameter viewing area. The three side windows were used primarily for

visual < bservation while the end window was used primarily for photography. Use of

the side windows for photography is limited by their proximity to the area of interest

which severely reduces the depth of field.
4,2 SELECTION O= GOOD DISTRIBUTOR

The good distributor used in the ¢rycgenic testing was selected on the basis of

e it O L
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discharge potterns observed in the smoke test chamber. This distributor, shown on
the right in Figure 21, has a nearly uniform discharge velocity with no noticeable
non-normal components. The discharge pattern of the distributor iz shown in end
view in Figure 22. No side view photographs were attempted; but the flow was vis-

vally observed and noted to be uniform in profile.

The distributor is 10.0 inches in diameter by 2.5 inches de<p as shown in Figure 23.
It consists of a 2-inch deep plenum into which the incoming gas is initially dumped
and a 0.5-inch deep normalizing chamber from which the gas is injected into the
test tank. The plate which separates the two chambers (the inner baffle) ond the
bottom plate (the outer beffie) are both drilled with number 40 holes (0.098 dia.)

. on a square pattern of 0.5-inch centers but with the pattern in one boffle offset '
0.25-inch in each direction from that of the other baffle. The material throughout

is 0,040-inch thick aluminum and the fabrication is by welding.

The heat capacity of this distributor is approximately 0.375 Btu/oR. Assuming that
3 lbs of hydrogen gas raises the femperature of the distributor by 500°R, the average
temperature drop of the gas will be 14°R or approximately 3 percent of the available,
The cffect of this small temperature change on the quantity of pressurant gas required

can be accounted for in the overall evaluation.

4,3 SELECTION OF POOR DISTRIBUTOR

The "poor" distributor to which the performance of the "good" distributor is compar=
ed was the best distributor which weighs no more than an open tube. An additional

requirement was established to facilitate the analysis of the test data: the tube term=-

inated in @ sonic orifice. Consistent with these requirements a sonic orifice was

placed in the end of the existing pressurant line in the test tank. The orifice extend=

- mea e

ed approximately & inches into the tank at a point 4.5 inches below the tank top.

It was directed radially toward the opposite wall.
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FIGURE 23 PLENUM AND BAFFLE DISTRIBUTOR DESIGN
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4,4 FLUID DYNAMICS SYSTEM

The fluid dynamics system used in the test program is shown schematically in Figure

24,

The 500-gallon cryogenic test tank is shown in Figure 25. The inner vessel of the
tank is 40 inches in diameter X 98 inches in length with ellipsoidol domes., The wall

is 0.090-inch thick stainless steel.

The annular volume between the inner and outer shells of the tank is perlite filled in
order to maintain a uniform and reasonably low heat leak into the tank. Localized
heat leaks into the ullage region of the tank have been reduced to an estimated 80

Btu/hr for a 500°R temperature difference.
4.5 LIQUID TRANSFER SYSTEM

Tne liquid transfer system was composed of the line connecting the storage tank and

the test tank and the valves which control the flow in that line.

Meving from the storage tank forward to the test tank, the following valves appear

in the order listed:

1) A manually operated 2-inch gate valve which was used to isolate the
storage tank and is normally closed.

(2) A 0.25-inch relief vaulve used to vent the line between the 2=inch
gate and positioning valves when both are closed.

(3) An electrically operated 2-inch positioning valve used to meter the
liquid flow during discharge and was normally cpen to prevent a pres=
sure build-up due to the entrapment of evaporating liquid between it

and the gate valve.
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efer. [hat part ot the line trom the storage tank through the biast wall, which sep=
arates the test area frem the storage tank, is rigid; the remainder of the line is flex~

ible. The line within the test tank annulus is effectively insulated by the annulus

vacuum,

The isolation valve is opened only when liquid transfer is imminent. At all other
times the valve is closed to prevent inadvertant transfer of liquid from the storage
tank to the test area. In addition, it minimizes the amount of liquid outside the

storage tank under non-testing conditions and thereby reduces the propellant loss

due to boiloff.

The pressurant gas system is composed of the gas manifolds, transfer line, valving,
and the test tank venting components as shown in Figure 24. The electrically oper~
ated valve between the manifolds and the pressure regulator is used to immediately
isolate the manifoids at the end of a test run. This eliminates the loss of gas which
otherwise would blow through the tanks unnecessarily. Also, it retains the residual
gas so that it may be measured and thus provide u check on the amount of gas used.
The manually set regulator is used to reduce the inlet pressure to the controlling reg-
ulator so that smoother action of that regulator is obtained.

The tank vent system contains three parcliel elements as required to insure safe oper=
ation under all reasonable conditions. These include a rupture disc as an ultimate
fail-safe device, an electrically operated on-off valve to provide fast operating low
pressure-drop venting, and a pneumatically operated, variable position valve to

provide fine control of tank pressure through venting.
4,6 PROPELLANT STORAGE AND SUPPLY

Liquid nitrogen required for use in the test tank wos supplied from and returned to
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the 6000-gallon storage tank.

Gases were suppiied from standard cylinders through 6 bottle manifolds as required.

The gas manifclds are in the form of saw horses to facilitate the mounting and remov=
ol of bottles and to eliminate the necessity for tying bottles in place to prevent tip=
ping. Gas cylinders when not in use are stored in racks along the concrete wall near

the place of use.

4.7 INSTRUMENTATION

The layout of sensors within the tank is shown in Figure 26, and the reasons for the

particular selection and location of the sensors are discussed in this section.

Liquid level was sensed by 0.1 wett, 100 ohm carbon composition resistors used in

the manner of hot wire anemcmeters. The technique is to pass a fixed current through
the generated heat from the resistor,

This technique has been used quite satisfactorily in the past except for some occa-

sions when a high level of liquid agitation resulted in a rather wide band of uncer=

tainty. This condition did not arise in the present program.

J
[
the resistor and to detect the difference in ability of the liquid and the gas to remove e {
The liquid level sensors are identified by the prefix "LL" in Figure 26. The suffix 1

"A" indicates sensors used for recording; all other sensors are visually monitored.

These sensors are positioned as required to aid the establishment of the initial liquid

level and then to yield a record of the liquid level history through the period of a

test.

O N P -

Tank wall and pressurant gas temperatures are measured with copper-constantan therm=

ocouples located as shown in Figure 26 by symbols prefixed by a "T" or "W",
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The thermocouples aiong the tank centerline are used in the determination of the
quantity of gas within the test tank at any time. This was azcomplished by integra-
tion of the axial gas density profile within the tank (with due consideration for tank

geometry and radicl temperature profiles). Close spacing of the thermocouples near

the initial liquid surface is required to obtain proper consideration of the more dense

gas at that location,

The outboard gas temperature probe and the wail thermocouples were used to indicate
the effects of wall scrubbing. In additicn to that primary functior of the outboard

probe, it provides evidence of gross radial temperature profiles.

All thermocouple data were recorded continuously on ozcillographs. The observed

gas temperature variation with time provides a qualitative feel for the gas turbulence

within the tank, The thermocouples were referenced to the propellant temperature

so that negative galvanometer deflecticns were avoided.

Tank pressure was continuously recorded on the oscillograph to provide a permanent

record of its history and was visually monitored on. a beurdon gage for test control,

The quantity and rate of pressurant used in each test was determined by application

of the equation of state corrected for gas compressibility. Gas bottle pressure was
sensed by a probe extending from the interior of the bottle to a strain gage transducer,
The transducer output was recorded continuously on an oscillograph. Temperature
was also measured inside the gas cylinder which, except for the addition of a temper-
ature probe down its center, was identical to the other cylinders supplying the mani-
fold. Since this ¢ylinder was representative of the others on the manifold in that it
has the same mass, area, and initial temperature, it is expected that the gas tem=

perature and pressure history within it represent those of the other cylinders.

Pressure in the annulus of the test tank was monitored by thermocouple=type vacuum
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transducers, This is a test control measurement used only to indicate that the intend-

ed range of annulus pressure is maintained,

4.8 CALIBRATION

Each thermocouple-galvanometer unit was individually calibrated at three points by

the use of baths at known temperatures. A typical calibration curve is shown in Fig=
ure 27, '

In order to inciude the effects of temperature dependent lead resistance and of in-
homogenieties of the wire in the calibration, that part of the wire which is normal-
ly submerged in the liquid during testing was submerged in the liquid during the c;::l-
ibration. This procedure has been found to be desirable in the calibration of any low
temperature thermocouple and even more desirable when the thermocouple output is

monitored by a current drawing instrument.

Liquid nitrogen boiling at atmospheric pressura which corresponds to a saturation tem=
perature of 138.6°R was used as the reference bath. The other reference liquids were
a COz-frichloroefherne mixture (359.5°R) and an ice-water mixture (492.6°R).

The temperatures of the latter two baths were obtained by a calibrated liquid=in-
glass thermometer; the temperature of the liquid nitrogen bath was obtained from the

vapor pressure curve and the known atmospheric pressure.

With the reference junctions submerged in the liquid nitrogen baths, the measuring
junctions and thz appropriate length of lead wire was submerged in each bath and an
oscillograph record was taken after the thermocouples reached equilibrium tempera=
ture as evidenced by stability of the traces. The measuring junctions and lead wires
were then removed from the bath and allowed to reach ambient temperature before
being subiierged in the next bath. Temperaiure plotted versus differences in trace

deflection constitutes the calibration curves. Test data was reduced directly by the
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l

use of these curves with a correction added to account for differences in the refer=
ence junction temperature. No other correction was required since thermocouples

are not subject to calibrotion shifts due to aging.

All other instrumentation was calibrated in accordance with the standing calibration

procedures of the Instrumentation Research Laboratory Department.
4.9 TEST RESULTS

Test conditions for each of the seven cryogenic tests are given in Table 2. The first
six tests employed the "good" distributor, Test number seven employed the "poor"

distributor, Tables 3 through § contain the test data.

The poor distributor is aterminal orifice located 4.5 inches below the top of the tank
and approximately 8 inches from the tank sidewall. It is aimed, herizontally and
along a tank diameter, ot the opposite wall. The good distributor is the 10-inch
diameter plenum~-and-baffle desig.n shown in Figure 23, It was located along the

tank centerline with the discharge directed axially toward the liquid surface from a

plane approximately é inches below the top of the tank.

The extreme sensitivity of ullage pressure to pressurant inlet velocity became quite
evident in the "poor distributor" configuration. Gross turbulence existed in the ul-
lage region, and perhaps also in the upper region of liquid, as a result of high inlet
gas velocities, During the initial pressurization and early part of the discharge run,
the sensitivity was more pronounced as was expected due to the proximity of the in=
let to the liquid surface. Low subsonic velocities were required during this phase

of the test run fo prevent excessive pressure coilapse. Increasing the inlet velocity

above some limit which appears to depend primarily upon liquid level and ullage
pressure, results in massive condensation evidenced by a sudden drop in ullage pres-

sure. The lower limit to which the pressure falls probably is a function of both the
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agitation and the temperature of the liquid. Ullage pressure will remain near the
lower iimit of a drop until either the liquid temperature is raised sufficiently to re-
tard further condensation of the total pressure of the entering gas is reduced to a
value approximating that in the ullage region. One test, after sevaral unsuccessful
attempts 1o ovoid pressure collapse, was completed by careful manipulation of the
pressurant pressure regulator. This test required approximately twice as much pres-
surant as its parallel in the good distributor configuration. Further testing in the
poor distributor configuration would be of doubtful value since inlet velocity has al-

ready been shown to be the principal criterion of distributor design.

>

The extreme turbulence existing in the ullage region as a result of the poor distribu=
tor is clearly indicated by comparison of temperature gradients in Table 2. No sig=
nificant ullage region temperature gradients exist in Test 7 (poor distributor) indi-
cating that the tank wall has reached equilibrium with the gas. All other tests show
temperature gradients both axially and radially in the ullage region. It is evident
from this that the poor distributor results in high rates of heat transfer from the ul-

lage gas to the tank wall and to the liquid.

P

O N

Curvature of the upper tank wall probably works to the disadvantage of poor distri-

—

butor. Since only gross condensation can account for the observed propellant col=

lapse, it follows that considerable liquid turbulence must exist in the region of the
liquid-vapor interface. This turbulence is governed primarily by ullage region geom=
etry, including location of the inlet, and by the inlet stream velocity. The present

tests with nitrogen indicate that velocity is the more significant consideration.
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5.0 CONCLUSIONS AND RECCMMENDATIONS
The following conclusions are drawn on the basis of the anclyses and experiments

reporied here:

S

(1)  High velocity impingement of condensable pressurants on the liquid sur= .

face must be avoided in order to prevent massive condensation and se-

vere collapse of ullage pressure.

(2) A radially discharging pressurant inlet coaxially located on a flat or

slightly concave surface is characterized by a high rate of secondary

fluid entrainment accompanied by a rapidly decaying maximum velocity.

These characteristics are desirable in a pressurant distributor since they
tend to reduce the region of influence of forced convection thereby ap=
proaching the more nearly optimum situation in which free convection

dominates pressurant gas heat transfer.

(3) The strength-to=weight ratio of Rigimesh; the woven, rolled, and sinter=-

ed screen made by the Pall Corporation; is substantially higher than that

of any other material considered.

(4) Multiple radial distributors will have a lower total weight than a single

distributor of the same total active area and designed for the same inter=

nal pressure. However, additional plumbing required for muitiple dis=

tributors could cancel much of the apparent savings in weight,

(5) The effects of gas flow about the liquid surface, especiaily when the

gas impinges normal to the surface, should be investigated. Heat and

mass transfer across the liquid=vapor interface involves liquid stratifica=

tion as well as conditions in the gas. Perhaps, this complexity is the

66

A




reason for its avoidance. However, with a better understanding of the
é ¥ phenomena involved, it may become feasible to use the end surface of
a radial distributer in such a manner as to reduce the total system weight
j by trading interface heat and mass transfer for sidewall heat transfer and
{ . distributor total area. The criteria for the initiation c;,f massive conden=
. sation should be determined so that the possibility of encountering such

0 a condition can better be avoided. .
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APPENDIX |

CALCULATION OF TURBULENT
FREE CONVECTION DATA USING

ECKERT AND JACKSON EQUATIONS

RECOMP 11l PROGRAM NO, L-00072
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APPENDIX |

I.1 SUMMARY

This program is designed to solve the turbulent boundary layer free convection equa-
tions as derived by Eckert and Jackson (Reference 1). The program is written spacif-
ically for the Recomp ill computer. However, since the program language is a form

of Foriran, no difficulty should be encountered in adopting this program to another

computer.employing a similar language. Figure I-1 is the program listing.
The program operates as follows:

(1)  imax is read from the input tape and then imax sets of input data (x,
tw, tb, rho, vu, ¢p, beta, cond) are read

(2)  for each set of input data, the following quantities are calculated in
order until all sets of data have been used - gr, pr, htp, ul, and h

(3)  for each set of input data the following quantities are output under
the appropricte headings = x, tw, tb, g:hfp, ul, and h

(4)  the program is terminated

A maximum of 20 sets of input data cre permitted in a single run. When more data

are required multiple runs must be mada.

1.2 ANALYSIS

The equations of Eckert and Jackson (Reference 1) were chosen for use because of -
the good agreement of the calculated heat transfer coefficients with experimental
data in the range of Grashof numbers from 1010 to 1012. This good correllation of

data suggests that these equations may be valid at higher Grashof numbers,
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The characteristic velocity is calculated from the following equation:

o
Jd= 1,185 Y 00 [1+o.o494(pr)2f'3] 0.5

rho « x

P T STy

where

32,16 beta (tw=tb) x3 rh02
2

vu

3600 vu cp

pr= cond

The heat transfer coefficient is calculated from the following equation:

b= cond htp

X s

where

51 "
o= 0.0295+ o0+ o/1% 1400494063 04 .

1.3 INPUT

The input data are arranged in the following order:

imax

x tw tb rho vu cp beta cond (repeated imax times)

TTme——. -

- e

Each of these numbers except imax may be input as either a fixed point or a floating

point number. The floating point form, which permits both mixed decimal (=123.4)

and exponential (=1.234e2) numbers, is recommended. A maximum of 10 chdracters
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is permitted for each of these input quantities. The number of data points input,
imax, is a positive integer and must not contain a decimal.

’ 9
Any of the input devices may be used at the discretion of the operator. However,

it is recommended that a tape be punched and input through the Facit tape reader

when more than a few sets of data are to be handled.

a0 el coves

.4 OUTPUT

The output data include x, tw, and tb from the input data in addition to the desired
output of gr, htp, ul, and h. These input data serve to relate the output to the in-
put. However, since no provision is made to output all of the input data or for the
output of comments, the engineer must write on the output sheet any additional iden= {
tification which he requires. A b

|
The cutput sheet contains 7 columns each of imax entries. Each column bears the

appropriate heading to identify its contents. The columns are arranged in the order:

X, tw, tb, gr, htp, ul, and h.

Data quantities are output with 4 significant figures in the exponential format (0.2213e-
01 = 0.02213).

1.5 SAMPLE CASE

The input and output data of a sample case having 16 sets of data is presented here

for reference, The fluid employed in thi: case is oxygen. The input data shown in
Figure 1-2 were used in this case but the format of the data was different. However,

the format shown is proper. Figure =3 is a reproduction of the actual output sheet.,
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| R
FIGURE 1-2 INPUT DATA FOR SAMPLE CASE {
X  __IW____TB___ RHO VU  CP BETA COND
| 3. 150, 160, .645  4.36 E-06 .22 .25 E-03 4.43 E-03  °
| 190, .517 4.9 5.26 4.9 |
| | 210,  .488 5.23 4,67 5.23 4
| 230.  .463  5.53 4.35 5,52
l 310,  .382 6.66 3.23 6.71 f
@ 410, .314  8.02 2.44 8,14 1
| [ R 2 B X 1.79 10.38 :
300, _310. .298  8.66 3,23 8.51 |
| a0, 275 9,02 2.94 9.37
| 370.  .262 9.4 2.71 9.8
| 410, .248  9.86 2.44 10.38
| 460.  .231  10.4] 2.8 14
| - 500.  .220 10,9 2. 11.67
‘ s, 204 1155 1.79 12.52
! 450, 460, 193 1211 2.18 13.13
! 490. 187 12.5 2.04 13.58
| 510, .183  12.7 1,96 13.86
| V Y 50, .73 132 V¥V 179 ¥y 1455 ¢
'
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Symbol

tw
tb

rho

imax

Description Units 1
Length of boundary layer run ft.
Wall temperature ' °R
Bulk fluid temperature °R
Specific density of fiuid lbs/fr3
Coefficient of viscosity ' Ibs/ft=-sec
Specific heat Btu/lbs-_R 4
Coefficient of expansion 3}- ‘
Thermal conductivity Bf%/hr-ft-oR .
Characteristic velocity ft/sec ‘
Heat transfer coefficient B'ru/hr—ftz-oR :
Prandt! number o . —————— . !
Grashof number . eeeeea
Nusselt number  cmecaa
Number of input data points = =ceaea
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APPENDIX 11

1.1_SUMMARY 1

This program is designed to provide a means of correlating pressurant gas requirements

data for a range of conditions which include tank size and construction and mission

requirements. 't is intended to be used primarily to scale requirements of flight sys- §
Y

tems down to those of test systems and to extropolate test results up to ‘light systems'

reguirements. 1

The program operates as follows:

(1) R, D, and Cp are read from the input tape.

PRI Y N N

(2) Imax is read from the input tape and is followed by Imax sets of input
deta (pi, Pu, Ti, Tu, h, Time, U, Tm, Rhom, Cpm).
(3) For each set of input data, the following quantities are computed and

output under the headings A, C, E, and F, respectively:

Wg hT tm pm Cpm
piVt! piDCp’ ht

, and & %u .
.pU

The corresponding input data is output also.

(4) The program is terminated.

A maximum of 25 sets of data are permitted in a single run.

1.2 ANALYSIS

The equation used in this scaling analysis is developed elsewhere in this report. That

equation is:




A

b<
W _ s . ~0.113 im pm Cpm -0.0675 T -0.098
piVt ’ pi DCp hT . Qi

The form of the correllating equations permits the use of this program for the compu=
;\;ssf and % mecrly by recompiling the program with the appropriate

constants and exponents in place of the ones shown above.

;ation of

The program listing is presented in Figure ll=1.
i11.3 INPUT
The input data are arranged in the following order:

R, D, Cp
Imax

Pi, Pu, Ti, Tu, h, Time, U, Tm, Rhom, Cpm (repeated Imax times)

Each of these numbers with the exception of Imax may be input as a fixed point or a
floating point number. The floating point format (mixed decimal or exponential) is
recommended. A maximum of 10 characters is permitted in each .input quantity.

Imax is a positive integer and must not contain a decimal,

I1.4 OUTPUT

The output data include all input data, except Imax, in addition to the dimensionless
terms. Data quantities are output with four significont figures in the exponential

format. The output data are arranged as follows:
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INPUT

R D
XXXX XXXX

h  Time
XXXX XXXX

o "OUTPUT

A C

XXXX XXXX

XXXX

XXXX

Tm

XXXX

DR

Rhom

XXXX

Ti Tu
XXXX XXXX
Cpm
XXXX

Since no provision is made for the input/output of comments, the user must write on

the output sheet any additional icentification which he may require.

1.5 SAMPLE CASE

The input and ouiput of a sample case having two sets of data are reproduced in Fig~

ures [i=2 and i}=3, respectively,
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1.6 DESCRIPTION OF SYMBOLS

Symbol

——Imax, imax
Pi, pi
Pu, pu
R, r
Rhom, pm
pi
pou
Ti, ti
tm
Tu, tu

Time, time, T

U, v, %U

Vit

Description

Ratio of actuai quantity of gas to that
required if no heat or mass transfer

occurred
Cimensionless parameter

Constant pressure specific heat of gas .
Specific heat of tank wall

Diameter of tank

Dimensionless parameter

Dimensionless parameter

Heat transfer coefficient in uliage region
Number of data sets input

Pressure of inlet gas

Initial ullege pressure

Gas constant

Specific weight of tank wall

Specific weight of incoming gas
Specific weight of initial ullage gas
Temperature of incoming gas
Thickness of tank wall

Initial ullage gas temperature
Emptying time of tank

Ratio of initial ullage volume to total
tank volume

Total tank volume

Units

Btu/lb="F
Btu/Ib ="F
ft

ft .
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APPENDIX Il

Hi.1 SUMMARY

R Y

This appencix presents ihe results of a paremetric waight study of a radially discharging: .

pressurant distrioutor, The range of variables covered are as follows:

1) c=Aspect raiio (L/D) 0o 10

[

(
(2)  Active surface (sheil) area from 0 to 2C0 sq. ft.
(3)  Pressure (differential) from O to 100 PSi
(4) Tempercature range -473° to0 +1577°F.
(5)  Various head shapes:
(A) Hemispherical
(8) Dished
(C) Flat
()  Various shell (aciive area) materials:
(A) 60 X 60 X .0i1 screen -
. (3) 12 X 64 Rigimesh, Paii Corporation
Q) Perforated screen, 40 mesh

(D) Sintered siainless, Pail Corporation

M Type "C" =~ 165 micron?ore size

(2) Type "D" = 65 micron pore size

Tre hemispherical head is shown to be ligater, for a given diameter and pressure dif-
ferential, rhen cither the dished head or the unstayed flat head. The flat head is
consicercoly heavier than dished head. Non-hemispherical hecds are considered
only secause space iimitations might, in some cases, dictate their use even though

a heaispherical head wouid be lighter.

The 12 X é4 mesh Rigimesh screen of the Pall Corporation is shown to have a strength=

[} 1

to-weight ratio 35 percent higher than the second best active surface material considered.
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Plein woven and perforated screens have substantially equal strength-to-weight ratios

which are almost an order of magnitude higher than that of the sintered powder mate-

rials.

[11.2 MATERIAL SELECTION

[11.2.1 Short Time Tensile Values = Values In Kips(See Figure lli=1, Type 3165S5(Annealed))

Temp.

16C0

1400
1300
1200
1100
1000
%00
800
760
600
500
£00
300
200
100
0
-40
-80
-320
-423

O
F

o w‘? -

_?.rmcoT Sh?” "Design" A.S.M.E. Interpolation
ime Tengile___— — % Code _

22 o 19.4

27 6.0 23.8

35 9.4 30.8

46 16.C 40.5

56 27.2 49.5

63 41.6 55.5
71 56.0. 2.6 .
64.0 64.0

67.0 67.0

68.0 68.0

68.4 68.5

—  68.8 69.0

70.0 70.0

— 7.5 72,0

= 75.0 75.0

75.0- 75.0

85 90 75.0 75.0

104 86.6

— 118 98.4

185 156.0

210 175.0
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Nores:

(A) interpolation is ratio of "Armcc" Tensile/A.S.M.E. Tensile.
() Figures are A.S. M. E. standard.

(e Inierpolation Is ratio of "Design Tensile/A,S.M.E. Tensile.

iii.3 HEZAD SELZCTION

iHi.3.1

Vericbies:

Diemeaier 0-98" (Reference Figure 11i-2
g

Dished Head Stress Calcuiations

Temperature/Siress Velue

Working Pressure -0 10 180 PSi

No .afety factor,

100% cint efficiency (one piece).

Ail celeulations based on 1.D. dimensions.
Redius of dish = to diameier.

Knuckle radius min. 6% diameier.

Formula Used:

.885 PL
SE- .7

Reference: A.S.M.E. Code

“hizkness

Eificiency (100%)
Stress Value (See Figure |ll=1)
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111.3.2 fhemispherica! Heed Stress Calculations

Variadies:

ameter = C o 95

Temperature/Strass Velue

Working

Pr

cssure=~ 0 to 100 2SI

(};  Thickaess

\2)  Weigh:

[

Assumptions:

5y

'
[o14%

¢ No safety factor.

(2) He

io shell joint 85% efficiency.

i

(3) Al celeulaiions based on {.D. dimensions.

Formula Used:

!
t= nd Reference: A,S.M.E. Code

t = Thickness

? = Pressure

L = Rcdius

S = Siress Value (See Figure li=1)
£ = Eif

iii.3.3 Flat U

meod
lls.

ayed Heaas Stress Celeulations

Diameter = O to 98" (Figure lii=2)

ficiency (85% cs shell to head joint is part of this formula)

Tempercture/Stress Values

Working Pressure=0 to 100 PSI
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Find: 4
(1)  Thicknes
(2)  Weighs
Assumpiions:
) No safety factor.
(2)  All ccleulations based on {.D,
(3)  Vleights will reflect the 1.D. and will have to be modified according !
{
" b e %" ' .ll ' d - (] 1 lI h- ] Bl
0 exira ciameter wnicn widl be determinea oy snell thickness. )
Formula Used: - ‘
t= d \[CP/S  Reference: A.S.M.E. Code |
t = Thickness {
1
¢ = Dicmeter {
|
C = Arfccior cependent upon head; shell attachment, cimensions = figured
at .5 (Reference A.S.M.E. Code, Figure Ub-34=1945)
? = Pressure
S = Siress Value (Figure lil-1)
i
|
Hl.4 SHcLL SCLECTION (ACTIVZE AREA) .
i1.4.1 Sheil Stress Caiculetions
dase problem using solid 316 S.8. '
Varicbies:

Siemeicr = 0 o 96" (Reference Figure 11i=2)

femperciure/Sticss Value (Reference Figure Hi=1)

ng Pressure = 0 to 100 PS)

93
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] Fiacs
(i} Taickness
{ Assumz.ions: -
{(-)  Nosciciy icctor,
i {2, 130% ciai efficiency.
ren Attt e 1 i 1 D te .
\3;  Ae caicuiciions based on [L.D. dimensions.
‘
4 Formuic Uscds {
R
4 -
{ E e Reference: A.S.M.E. Code
p oo = O !
;= Tn-leﬂéSS
- 2 = Pressure
3 ; —

[OERRRY U NP

Reference: Pali Trinity Corporation, Cortland, Kenfucky
Mr. Martin G, Kurz, iviencger

. 1 - )

Mr. Kurz furnisticd ihe following facts regarding the Type "C" and Type "D" Sintered__

Stainiess Sicels In a telephone conversation with Mr. J. Prosst of Lockheed Indus- o

{})  The Pail Corporation achieves an ccival bond between particles due to

, . o
aigh sintering temperatures (24007).

(2)  Tac Pail Corzoration states that their sintered stainless tensile strength

95
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Sy . - -/ - /- -~ > S/ - & v/ Ty - myemmemmTs e
ve.ucs for wiiierent temperaiures is c.mest in dircer ratio to the ecuiva-

1

vee of fype 816 stainless steel in the fuily annccled condition,

LAY . N .—-0-4- -~ m~mroA -~ o~ ~
) Tendlesirenginai 7977 Is Z, 000 PSi for Type "C" and 9,000 PS! for Type

-u_Ej ",

() =eiai void arec is 55% vor Tyse “C" and 30% for Tyge "D".

- .
Amatl QLo
s SRS SiTEn

= 7,030 2S; —

!
d
Tensiie Sirenginof Tyse "OYsintered= 9,000 2Si

O oermnm amat = 3¢/
cyse “CHsirengin ratio 9.5%
PPN Y GE LI L I JV Tata'tas = 3 1
cyme "COMialckness muitiziier = 10,71 times
- [E3e ' LIPS sl .3 = Y9
vyse "D sirengin rario = 2%
. -
- (11 W BN PO PN 4 -
cype "D Thlckness mudtislier =

A

e AA e

Weigni Coicularions:
Tyza "C"weighai rerle 5%
Tyee "O'weight ratlo 30%

L4083 Shein Melerial 60 X €3 X L0117 Screen, Type 316

Reiercnce: Kays, W. M. & Loadon, A. L., Comgact Feat Exchangers; McGraw -
=il ook Co., lme., New Vork, 1933,

e * Ciommmomeic'a
iensiie Sl TNORTEH

60

o= ! HIPSERRL S h e -~ p !
Loial iongituaing: sirencs perinch

e s ) ~m N o ’76
dOVSL VOITLCL, JIT8NnGs Zor 1nea = o

97
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Wire erca = (.C05325)7 x 2.1416 = ,000C3859035 sq;. inch

225
C00J8659835 x 2160 sivands = . 187035 sq. inch

Sirengin raiio = 18.7%
Thickness multislicr = 5,847

Assunotion:

~il strands in direet tension

el vervical strands/inch = 36

Tota. horizontel sirands/inch = 56 (Least Direction)

(-cast siress diveciion) = 2016 strands .
Toral wire lengily/cusic inch = 2180 + 2016 = 4174 inches

mes 4378 inches
&015080 cubic inches

6C X S0 X 011 screen weicht rerio 25.1%
~

e WEas A o o . Sl A a0

.A, -AJ‘?:.LQ._-

imesh = 316 5.5,

o "® .- N . le ~ ba . A.! f 3
ierence: Uranssiiation Ceeling through Ri

b !
v
.

raesn Sinterac Woven Wire Sheetl,

fof
<

rharch 1, 1944,

-
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Tensile Strengths ‘
Tensile strength of 316 S.S. ot 75°F = 75,000 PSi (See Figure I1i=6)
Tensile strength of 316 S.S. Rigimesh at 75°F = 31,400 PSI (See Bulletin)
Rigimesh strength rotio = 42% —_

Thickness multiplier = 2,42 times

Weight Calculations: _
12 X 64 mesh .039 thick = L (Layers) X .75 Ibs. (Page 4, Bulletin)
Obtain weight of 1 sq. ft., 1" thick
1.00 £+ .039 25.7 Layers
25.7 x .75Ibs, 19.29 lbs,
Weight of 1 sq. ft, 1" solid 316 §.S. plate = 42,58 lbs.
Weight of 1 sq. ft. 1" Rigimesh, 316 $.5. = 19.29 ibs.

Rigimesh weight ratio = 45,.5%

o

Reference: Dimensions obtained from "Design News", Page 51, January 1951,

Tensile Strength:
Effective tensile per linear inch
013" = Tensile area

012 Open area
025 Total pitch "

1.00 ¢+ .025 = 40 pitch/inch
013"x 40 = .520 inches or tensile

P

F.

, g_“{'{_Lﬁ.__

.

40 Mesh strength ratio = 52%

Thickness multiplier = 1,93 times

- et 4
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"~ Weight Calculations:
100% = 52% = 48% Open area each direction
.48 X .48 = 23% Open area
40 Mesh screen weight ratio = 77%

I11.4,6 Shell Material Efficiency

Strength Ratio - Using solid plate ot 100%

} (1) Solid 316 Stainless Steel / 100%
(2) 60X 60 X .011 Screen, Type 316 ©18.7%
" (3) 12 X 64 Rigimesh, Type 316 o 42,0%
(4) Perforated Screen, 40 Mesh Type 316 - 51.8%

(5) Sintered Stainless, 316 Stainless Steel
Pall Type "C" (165 Micron) -~ 9.3% *
Pall Type "D" (65 Micron) > 12,0%

. T

1.5 WEIGHT ANALYSIS

1.5.1 Weight Analysis, General

All weights based on one sq. ft. of Type 316 Stainless Steel, 1/4" thick equals
10,646 Ibs.

Dished Heads:

All weights based on A,S.M.E. dished head with radius of dish equal to diam~: ¥

eter, knuvckle- radius equal to 6% of dish radius and straight flanges as follows:

Up to 42", ' 2" wide flange
43 10 90", 3" wide flange

104

‘;' 4
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Base Weight Reference: "Fogle's Tank and Pressure Vessel Book" for A,S.M.E,
Code, 1963 = converted from pu-k:_ljibggiﬁ‘rpi_,_rlg_sj’e_eﬁl'_yggigbitﬂs_rtqu“tainl’g;s steel

Over 90", 4" wide flange

weights.

Hemispherical Heads:

All weights based on square footage as calculated by the formula:

Flat Heads:

— - ’ D2

"

-z

All weights based on square footage determined by inside diometer. No allow-

ance made for additional diameters required for shell to head joints,

Shell Materials:

See shell selection, Bgsis of weighf calculations covered under each individual

material ,

Weight Ratios for shell materialss

Mm
(2)
3
(4)
O

Solid 316 Stainless
60 X 60 X ,011 Screen
12 X 64 Rigimesh
Perforated Screen, 40 Mesh
Sintered Stainless -

Pall Type "C"

Pcli Type "O" " .

11,6 STRENGTH TO WEIGHT ~ =

100%
36.1%
45.5%
77 .0%

45.0%

. §50.0%

e A 4 e i ka e Rk s e o ek s A
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Weight, 1000 lbs.

3.25}F . £
Shell Thickn?/ /
2.0 |__ Scale | /_Z;
. | Change! 4 4

1.5

(=]

120
Area, "2

160

200

FIGURE Il1=-15 WEIGHT OF 60 X 60 X ,011 SCREEN SHELL
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weight, 1000 los.
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FIGURE 111-18,A WEIGHT OF TYPE "C" SINTERED SHELL
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I11.6.1 Strength To Weight = General

Shell Size:

Aspect iatio L/D does not matter for weight selection, The only factor to con=

sider here is for minimum total weight, the aspect ratio should be as high as

possible as this will keep the head diameter to o minimum,

Shell Material:

For the ultimate in weight saving, a material with as high a strength to weight

ratio as possible should be selected, The respective ratios are as follows:

(1) Solid Stainless, 316 ' 100% (Base)
(2) 60X 60X .011 Screen 68%
(3) 12 X 64 Rigimesh 92%

(4)  Perforated Screen, 40 Mesh 67%
(5)  Sintered Stainless

‘ Pall Grade "C" 21%
. Pall Grade "D" 24%

Head Shape: e

Head shape is a large factor to weight for a given thickness or pressure.

Dished = Intermediate Weight
Flat + Heaviest Weight

Weight Exarﬁples:
Heaviest Design = Aspect ratic = 1, Head shope = Flat,
Lightest Design = Aspact ratio = 10, Head shape = Hemispharicai.,

i11.7 DIMENSIONS

s

Hemispherical - Lightest Weight .' gwm[
1
]
y
3




v

I1.7.1 Dimensions, General

Shell:

Determine aspect ratio (L/D) from Figure Il[=2. Divide overall length by as-
pect ratio to obtain diamater,

Heads:
(1) Hemispherical = Overall height is equal to 1/2 the diameter plus the
thickness.
(2) = Dished = Refer to Figure ill1-19. Please note that heads have straight
flanges as follows:
Up to and including 42" diameter = 2"
Up to and including 90" diameter = 3"
Over 90" diameter e 4
(3) Flat = Overall height =to thickness.
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